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SUM MARY 
In stratified three-dimensional models the use of a boundary-fitted vertical co-ordinate is known to produce 
errors in the horizontal pressure gradient calculation near steep topography. The error is due to the splitting 
of the horizontal pressure gradient term in each of the momentum equations into two parts and the 
subsequent incomplete cancellation of the truncation errors of those parts. In order to minimize these 
pressure gradient errors, a fourth-order-accurate pressure gradient calculation has been implemented and 
installed in SPEM, a three-dimensional primitive equation ocean model. The stability and accuracy of the 
new scheme are compared with those of the original second-order-accurate model in a series of calculations 
of unforced flow in the vicinity of an isolated seamount. The new scheme is shown to have much smaller 
pressure gradient errors over a wide range of parameter space as well as a greater parametric domain of 
numerical stability. 
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1. INTRODUCTION 

The use of a transformed vertical co-ordinate which follows the terrain (here generically and 
imprecisely referred to as ‘a-co-ordinates’) has long been a standard feature of atmospheric 
models. Its advantages are easy to see: it allows a direct specification of the bottom kinematic 
and stress boundary conditions; it allows the model to contain the correct bottom slope over 
topography; and it makes programming more convenient. The disadvantages of the scheme are 
somewhat more subtle but can be (perhaps artificially) divided into three categories: incorrect 
calculation of the pressure gradient forces near steep topography; diminished blocking of the 
flow due to steep topography; and decreased numerical stability. In this paper we address the 
first and third of these issues by implementing and testing a fourth-order-accurate algorithm for 
the calculation of the pressure gradient in SPEM, a three-dimensional primitive equation model.’ 

2. BACKGROUND 

There are a variety of co-ordinate transformations available which map the vertical co-ordinate 
z into a constant range 0. Here we only deal with the simplest linear transformation: 

Z 
a = 1 + 2 - ,  

h 

CCC 0271-2091/94/040361-23 
0 1994 by John Wiley & Sons, Ltd. 

Received 13 January 1992 
Revised 7 September 1993 



362 J. D. McCALPlN 

where z is the vertical co-ordinate ranging from z = 0 at the fixed sea surface to -h(x ,  y) at the 
sea floor. The transformed vertical co-ordinate ranges from o = 1 at the sea surface to - 1 at 
the sea floor. This particular transformation matches the desired range of the Chebyshev 
polynomials used for the vertical interpolation and differentiation in the model. 

For this transformation the horizontal pressure gradient force is rewritten by use of the chain 
rule: 

where p is the pressure and V is the horizontal gradient operator, calculated with respect to 
either constant z or constant o, as specified. By use of the hydrostatic equation the second term 
may be rewritten, yielding a transformed pressure gradient of 

VP + gpvz, (3) 

where g is the acceleration due to gravity, p is the (spatially varying) density of the fluid and 
the gradient operators are now implied to be with respect to constant 6. 

We may divide the density field into three components: a large global mean po, a background 
stratification p(z) and a time- and space-dependent perturbation p'(x,  y, z, t). For oceanic 
applications the first term is typically three orders of magnitude larger than either of the latter 
two. The magnitudes of the two smaller terms depend on the strength of the oceanic flow regime 
being studied as well as the size of the domain under consideration, but they can be considered 
to be ordered (i~ % p')  for nearly linear flow regimes and small domains or comparable for strong 
flow regimes or large domains. 

Using this decomposition of the density field and again applying the hydrostatic relation, we 
may write the pressure as a sum of (i) an external part po(x,  y) = gpq % gpoq from the deviation 
of the free sea surface z = q away from the reference level z = 0 (plus any atmospheric pressure 
deviations in space), (ii) a mean part from the integral of po, (iii) another mean part from the 
integral of p(z)  and (iv) a perturbation part from the integration of the perturbation density: 

fix, Y ,  Z, t) = P O ( X ,  Y ,  t )  + gpoz + g P(z) dz' + g P'(x, Y, Z, l) dz'. (4) 1: s: 
For oceanic applications the second term on the right-hand side is typically three orders of 
magnitude larger than the other three terms. Since this term contains no lateral derivatives (with 
respect to constant z), it does not contribute to the horizontal pressure gradient forces. Note, 
however, that this term does contribute to both components of the pressure gradient term in 
the transformed co-ordinate system. The contribution to the two components exactly cancels in 
the continuous case but does not in general cancel when finite difference approximations 
to the derivatives are employed. It is therefore imperative that this component of the pressure 
gradient be removed from the pressure before the derivatives are c a l c ~ l a t e d , ~ . ~  since its truncation 
errors are also three orders of magnitude larger than the truncation errors of the dynamically 
active terms. The third term also has no horizontal derivatives and should also be removed 
before the pressure gradients are calculated. This will only help the overall accuracy of the 
scheme in regions for which the magnitude of p(z)  is much greater than the magnitude of p', 
however. 

Once the large mean pressure terms are removed, we wish to estimate the scale of the remaining 
pressure gradient error. A convenient case is that for which the perturbation density field is 
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independent of x and y and is characterized by an amplitude 8. As shown in Reference 4, a 
straightforward Taylor series expansion of a second-order finite difference scheme* reveals that 
the leading order truncation error terms of both parts of the transformed pressure gradient force, 
equation (3) (now divided by po to give units of acceleration), scale like 

Po 
(5 )  

where 8 is the characteristic amplitude of the density perturbations near the topography, L is 
the horizontal scale of the topography and A is the characteristic amplitude of the topography. 
The factor a is a scale factor that depends on the choice of the grid, the order of the model and 
the functional form of the topography. This error may be interpreted as a ‘leaking’ of the very 
strong gravitational/hydrostatic pressure gradient into the horizontal directions by way of the 
truncation errors. 

The pressure gradient error is thus seen to scale as the product of the magnitudes of the 
density anomaly, the square of the grid resolution of the topography and the topographic slope. 
Assuming that the magnitude of the density anomaly is not under our control (once the large 
mean is removed), this leaves us with the options of smoothing the topography (thus increasing 
L and slightly decreasing A )  or increasing the grid resolution. The former course is likely to be 
more effective at reducing the error, since the error dependence is at least cubic in L and only 
quadratic in Ax.  Unfortunately, we are then solving a different problem from that with the 
original topography and the applicability of the model becomes suspect. The alternative course 
of decreasing Ax has the disadvantage of increasing the computational cost-both by increasing 
the number of grid points and by decreasing the maximum allowed time step. 

An alternative approach to decreasing the pressure gradient error is to increase the order of 
the discretization and thereby change the functional dependence of the error scale. This approach 
is taken here, yielding an error which depends on the fourth power of the grid resolution of the 
topography. Obviously, this will only improve the situation if AXIL Q 1, but this is a requirement 
for accuracy with any scheme and so is not an additional requirement of the new model. 

Note that many atmospheric models do not suffer from noticeable problems associated with 
pressure gradient errors in transformed co-ordinates. This is because most combine the use of 
smoothed topography with spectral representations in the horizontal and thus have exceedingly 
small truncation errors. On the negative side, this smoothing of the topography can cause 
diminished topographic blocking of the flow. A compromise system such as Mesinger’s ‘1- 
co-ordinate systems attempts to combine the best feature of z-co-ordinates and a-co-ordinates 
but with an inevitable degree of subjectivity in the placement of the grid ‘jumps’. To date, this 
diminished blocking of the flow has not proven to be a problem in oceanographic applications, 
since the flow is typically intensified at the sea surface where the co-ordinate system is most flat. 
The issue will not be further addressed here, though it will be of interest to researchers studying 
gravity currents and other bottom-trapped flows with a-co-ordinate models. 

The tendency of a-co-ordinate models to display decreased numerical stability is poorly 
understood. One of the potential problems is the so-called ‘hydrostatic inconsistency’ which can 
arise if the grid slope exceeds a certain limit.6 This problem is relatively easy to check for and 
to avoid. A discussion of stability limits for test configurations very similar to those of this paper 

* This error estimate is obvious for the second term of equation (3) and is correct for the first term if vertical truncation 
errors are ignored. Since SPEM is spectrally accurate in the vertical, this assumption is reasonable unless the number 
of polynomials is very low. 
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is contained in Reference 7 (hereafter B&H). The results in this paper will be compared with 
the results of B&H wherever possible. 

3. MODEL DESCRIPTION 

The model used here is version 3.7 of the semispectral primitive equation model (SPEM), with 
the addition of the new fourth-order pressure gradient algorithm. The reader is referred to the 
original reference’ for details concerning SPEM. In the horizontal directions the model uses 
second-order finite difference discretization on a staggered grid (the ‘Arakawa C-grid’) in an 
orthogonal curvilinear co-ordinate system. In the vertical direction the model uses a boundary- 
fitted co-ordinate which may or may not contain an additional analytic stretching. The 
discretization is by spectral collocation using Chebyshev polynomials, though the formal 
structure of the code is general enough to allow expansion in dynamical eigenfunctions as well. 

The modification of the code employed in this study consisted of a small set of changes to 
the calculation of the pressure gradient forces. A standard four-point scheme was implemented 
which approximates the pressure gradient force using a fourth-order derivative operator for the 
derivatives and a fourth-order averaging operator for the density. For the staggered grid the 
fourth-order-accurate derivative operator is 

and the fourth-order-accurate averaging operator is 

In all cases presented here the pressure gradient calculation for the row/column of velocity 
points nearest the boundary was excecuted using the original second-order-accurate algorithm. 
In the isolated seamount test cases used here this presents no problems, but difficulties could 
arise with more realistic topography. The finite difference equations for one-sided derivatives at 
fourth order employ a five-point asymmetric stencil. Careful tests will be required to determine 
if the use of these wider stencils actually increases the accuracy. These tests will be deferred to 
a later paper. 

The reader should also note that only the terms responsible for the incomplete cancellation 
of the pressure gradient truncation errors are calculated with the fourth-order scheme. Several 
other spatial averages of metric terms arise owing to the transformation to orthogonal curvilinear 
co-ordinates. These are treated with the standard second-order-accurate schemes. 

4. TESTCASES 

The test cases employed here are all variants on the standard seamount test case of SPEM. The 
configuration is a channel closed on the north and south walls and recirculating through the 
east and west boundaries. The channel has a far-field depth of 5000 m and includes an isolated 
seamount in the centre. The height of the seamount is usually held fixed at 4500m, but the 
lateral scale of the Gaussian-shaped seamount is varied between 6 and 50 km. Since the channel 
has dimensions of approximately 320 km x 320 km, the seamount is well isolated from the 
boundaries. The finite difference grid used in the horizontal directions is stretched, with finer 
resolution in the middle of the domain. The stretching is analytic, based on a cosine function, 
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resulting in a 2 : l  variation in grid spacing from the centre of the domain to the edges. The 
stretching is applied in the same manner in both the x- and y-directions. The standard grid 
spacings range from 5.5 to 11 km. Some cases use a fine grid with twice the resolution. 

All cases were performed with eight collection points in the vertical. Since no vertical viscosity 
or diffusivity is used in these cases, there are no viscous boundary layers in the vertical. Therefore 
this resolution is adequate to accurately resolve the vertical structure for all test cases presented 
here. 

The background stratification for the experiments was exponential, with a 1000 m e-folding 
depth. Three different magnitudes were chosen for the density contrast: ‘weak’ at 0 5  kg m-3, 
‘medium’ at 2.0 kg m-3 and ‘strong’ at 4.0 kg m-3. These correspond to temperature contrasts 
of 3-57, 1428 and 2857 K respectively. 

For most cases the reference density field (a function of z only) was subtracted from the 
dynamic density field used by the model. The initial field for the model differed slightly from 
the reference field by 

pi = p(z)  + 5 exp (z/lOOO). (8) 

For the most commonly used value, 8 = 0 2  kg m-3, the initial condition of the model was 
slightly less stably stratified than the reference field for each calculation. Note that because of 
this choice of initial condition, these cases have the same value of 5 in the scaling of the pressure 
gradient error, equation (5 ) .  The initial condition implies a perturbation density anomaly that 
is twice as large as that used in B&H, but it is still a rather weak anomaly, corresponding to a 
maximum temperature anomaly of less than 1.5 K at any z-level. 

The standard time steps used were 128 stepslday (675 s) for the weakly stratified case, 256 
stepslday (338 s) for the case of medium stratification and 512 stepslday (169 s) for the strongly 
stratified case. We calculated the first baroclinic mode phase speeds for the three cases by a 
second-order finite difference approximation of the vertical structure equation. This gives first 
baroclinic mode phase speeds of 1.35, 2.70 and 3.82 m s-  for the weak, medium and strong 
stratification configurations respectively. The Courant numbers for the three cases are thus 0.182, 
0.182 and 0.129 respectively. 

Note that the direct calculation of the first baroclinic mode phase speed results in a different 
estimate of the Burger number than that used by B&H. They effectively estimate the first 
baroclinic mode phase speed as 

cp = NOH,, (9) 

where H o  is the far-field fluid thickness and N o  is an estimate of the Brunt-Vaissala frequency 
using the formula 

N ;  = gAPIPoH0. (10) 

This results in phase speed estimates of 4.89, 978 and 13.8 m s - l  respectively. Therefore their 
estimates of the Burger number are approximately 3.6 times the ‘true’ Burger number if that is 
intended to be defined as 

S = R,/L, (1 1) 

where L is the characteristic horizontal scale of the topography and R, is the first internal radius 
of deformation defined as 
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Here cp is the phase speed of the first internal mode gravity waves and f is the Coriolis 
parameter. 

A variety of other test configurations were used as well. These will be described in the sections 
containing their results. Owing to the very large number of calculations performed (about 200 
runs), the results are expressed almost exclusively in terms of the maximum absolute value of 
the spurious velocity generated by the pressure gradient errors. For the sake of reference, two 
figures showing the spatial structure of the errors are presented in Figures 1 and 2. The first 
shows a typical contour plot of the barotropic streamfunction after 5 days of integration, while 
the second shows the three components of velocity through an x-z section at the same time. 
This is a 'bad' case, containing rather large errors, and is about half-way through the density 
adjustment phase of the adjustment process. 

5. CONVERGENCE OF THE INITIAL PRESSURE GRADIENT ESTIMATE 

An obvious first test of the model is to demonstrate the convergence of the second-order and 
fourth-order pressure gradient estimates for the initial conditions chosen. For a fixed grid and 
a varying seamount width the maximum value of the pressure gradient at t = 0 was calculated. 
We then calculate directly the magnitude of the velocity required to geostrophically balance the 
error, as suggested by H a n e ~ . ~  It will be shown in later sections that the actual adjustment 
process is more complex and involves a redistribution of the density field as well as the generation 
of geostrophic flows, but this measure of pressure gradient error has the advantage of being 
intuitively straightforward. 

The results are shown in Figure 3 for both the second-order and fourth-order cases. On the 
basis of the scaling for the pressure gradient error, equation (3, we expect the errors to vanish 
as L - 3  and J ! - ~  respectively. The observed asymptotic orders for the schemes with the stretched 
grid are -2.53 and -4.43 respectively. These are approximately half an order slower than the 

'I_ : .._. 
\ I 

CONTOUR FROM -625000 TO 725000 BY 50000 
Figure 1 .  Contour plot of the barotropic streamfunction of a typical unforced spin-up problem after 5 days. The spatial 
structure is essentially the same for the second-order and fourth-order results. The scale and structure of the topography 

can be seen in Figure 2 
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Figure 2. Contour of all three velocity components of an xz-plane at the same time as the streamfunction plot of Figure 1 

desired result. The explanation comes from the fact that as the seamount width increases, the 
region of maximum slope moves away from the region of maximum grid resolution. Repeating 
the experiments with a uniform grid (with the same average spacing) shows the asymptotic 
convergence of order - 2.94 and - 4.87-almost exactly the desired values of - 3 and - 5. In 
these latter cases the errors were larger because the narrower seamounts were in a region of 
approximately 4 km resolution, compared with approximaely 2.75 km resolution with the 
stretched grid. 

It is also possible to calculate the numerical parameter ct from equation (5) using these results. 
Except for the narrowest cases (which are barely represented on the grid), the scale factor is 
approximately 1/6 for the second-order scheme and approximately unity for the fourth-order 
scheme. These values hold for both the uniform and non-uniform grids and vary by less than 
a factor of two across all the cases. 

The representation of the pressure gradient error as an equivalent geostrophic velocity can 
be validated by running the model with linear dynamics and a fixed density field. Although this 
system is not very closely related dynamically to the full primitive equations, it has the desirable 
feature of allowing solutions which are steady geostrophic balances against the spurious pressure 
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Figure 3. Maximum value of the geostropic velocity required to balance the initial pressure gradient error. Results are 
expressed as a function of seamount width and are presented for the second-order and fourth-order models for both 

uniform and stretched grids 

gradient. Since the system is linear, it is sufficient to simply ignore the high-frequency inertial 
oscillations and observe the temporal mean of the solution. 

The results of this case are presented in Figure 4. These results are for a very well-resolved 
case with a fairly strong density anomaly of 0.9 kg m-  ’. The seamount amplitude is 4500 m, the 
lateral scale is 40 km and the grid spacing varies smoothly from 2.75 km at the centre of the 
domain to 5.5 km at the boundaries. The results for each case show the superimposition of 
inertial and geostrophic solutions of roughly equal amplitudes. The time-mean peak error 
velocity for the second-order case is roughly 40 times that of the fourth-order case. 

For sufficiently small errors, it might be desirable to initialize the model using such a technique 
to develop an initially geostrophically balanced flow without disturbing the initial density field. 
This would eliminate the generation of undesired gravity wave energy from the solution when 
the full dynamics were turned on. Unfortunately, the gravity wave energy is not so easy to get 
rid of in a closed domain and the viscosity based on spatial derivatives is relatively inefficient 
at getting rid of gravity waves. A temporal damping could be added to effectively remove the 
gravity waves while leaving the steady geostrophic flow, but such a feature is not currently a 
part of SPEM. 

Since the density field is fixed in this case, one would expect that the initial pressure gradient 
error determines the steady state part of the flow by geostrophy. This is the case. Comparing 
the mean of these time-dependent results with the estimates of the required balancing geostrophic 
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Figure 4. Peak error velocity from the fixed density model for a 5 day integration for the second-order and fourth-order 
models. The seamount amplitude is 4500 m, the lateral scale is 40 km and the initial density anomaly has magnitude 
0.9 kg m - 3 .  The grid spacing varies from 2.75 km at the centre of the domain to 5.5 km at the boundaries. Note the 

logarithmic ordinate 

velocity from Figure 3, we see that the second-order case had an estimate of 0.77 cm s- and 
an observed mean of 1.10 cm s - l ,  while the fourth-order case had an estimate of 0.022 cm s - l  
and an observed mean of 0030 cm s- ' .  

The differences in the estimates are due to the staggered grid. In the time-dependent case the 
Coriolis terms are averaged in x and y in the momentum equations, whereas in the steady state 
case the pressure gradient terms are averaged in x and y in the initial geostrophic balance. The 
averaging of the pressure gradient errors is also consistent with the direction of the error, which 
is a bias toward low estimates of the required geostrophically balancing velocity. Because of this 
bias, using this geostrophic balance as an initialization scheme would not provide perfect results. 
Nonetheless, it is expected that the initial gravity wave energy could be reduced by a significant 
factor by using such a balance. For the previous case it appears that the gravity wave amplitude 
reduction should be a factor in the range of three to four. 

6. THE ROSSBY ADJUSTMENT PROCESS 

If the convergence of the initial pressure gradient errors to zero could be related in a trivial way 
to the quasi-steady solution after the Rossby adjustment process, then the task of understanding 
the effects of the pressure gradient errors would be finished. Unfortunately, the actual behavior 
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of the model is far more complex, in part owing to the adjustment of the density field and in 
part owing to the model’s requirement for non-negligible levels of lateral viscosity to maintain 
numerical stability. 

At least four time scales are evident in this adjustment process. The first is an inertial scale, 
which for this model is l/f = lo4 s. This is common to all Rossby adjustment models and it 
the only time scale present in the results of the fixed density model (see Figure 4). The second 
and third time scales are due to vertical then horizontal advection of the mean density field. 
These vary significantly depending on the size of the spurious velocities. They can be as short 
as O(2) days but are more typically O(10-20) days. The vertical advection comes from the fact 
that the solution exhibits significant cross-isobath velocities near the bottom which drive 
significant vertical velocities because of the bottom kinematic boundary condition (see Figure 
2). This then causes lateral inhomogeneities in the density field which are advected horizontally. 
The fourth time scale is the dissipation scale due to lateral biharmonic viscosity. It is generally 
long, but for some of the narrow seamount cases it overlaps with the density advection time 
scales. Evidence of these time scales is present in Figures 6, 7 and others. 

The combination of the several velocity growth time scales with the viscous decay and the 
uncertain stability of the model makes it very difficult to give quantitative estimates of what the 
‘final’ adjusted geostrophic velocities would be in an otherwise equivalent inviscid system. We 
note that no matter how small the (finite) diffusion is, the only likely allowable steady solution 
is the trivial one.* Since the diffusion is typically not infinitesimal in the cases presented here 
(see Section 6.6), comparisons between runs must be somewhat qualitative. 

The remainder of the paper will deal with the sensitivity and stability of the Rossby adjustment 
process of the full (non-linear) model. It is not the intent of this paper to detail the causes of 
instabilities within SPEM, but rather to show that the fourth-order pressure gradient algorithm 
significantly improves the model’s stability (most likely by simply decreasing the magnitude of 
the noisy error field). Since virtually all numerical models have some sort of stability problems 
in the presence of strongly varying geometry, this result is likely to have general applicability 
even if the specific details of the implementation of the rest of the model change. 

6.1 Dependence on seamount horizontal scale 

Two series of test cases were performed with varying horizontal seamount scale-one with 
weak stratification (Rd = 10.5 km) and the other with medium stratification ( R d  = 25.7 km). 
Seamount e-folding widths of 40, 20, 15, 12, 10, 8 and 6 km were used. All cases completed their 
10 day runs without evidence of instability when using the standard time steps and standard 
levels of lateral biharmonic viscosity (‘hyperviscosity’) (A4 = 10” m4 s-  *). 

A summary of the peak error velocity at day 10 for each of the cases is presented in Figure 
5. The grid was held fixed across the runs and is the standard grid used for the SPEM seamount 
test cases. The grid spacing ranges from 5.5 km at the centre of the domain to 11 km at the 
boundaries. The figure makes it clear that the relative advantage of the fourth-order scheme is 
best for well-resolved topography. The fourth-order scheme is clearly much more accurate than 
the second-order scheme for seamount widths of 15 km or more, independently of the mean 
stratification. 

The initial pressure gradient error for the fourth-order scheme is expected to decrease by a 

* The other possible solutions with vanishing hyperviscosity that are consistent with the boundary conditions are 
streamfunction patterns varying as cubic polynomials in y. It is unlikely that one of these x-independent solutions will 
be found in a case with a seamount in the channel. 
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Figure 5. Peak error velocity at the end of a 10 day integration as a function of the seamount e-folding width 

factor of 24'5 = 22.6 (see Section 5 for the reason) when the topographic scale doubles, while 
the initial pressure gradient error of the second-order scheme is expected to decrease by a factor 
of 22.5 = 5.7 when the topographic scale is doubled. The fact that the final velocities do not 
scale like the truncation error is an indication of the fact that a more complex adjustment process 
is taking place. 

Careful examination of Figure 5 shows that the peak velocity at day 10 is increasing 
approximately as for the second-order model. This is rather distressing, since the pressure 
gradient force which drives the error is decreasing as L - 2 . 5 .  This implies that the adjustment 
process is amplifying the peak velocity by a factor proportional to L3. The results of the 
fourth-order model are decreasing as L-'.', also implying an adjustment transfer function of 
order L3. 

These results are inconsistent with the theory of inviscid Rossby adjustment (see e.g. Reference 
8). The simplest model of linear, inviscid Rossby adjustment assumes a homogeneous fluid and 
that the vertically integrated potential vorticity q = (0, - u,, + n/h is conserved. By requiring 
that the final state be geostrophic, one can solve the linear one-dimensional problem for 
sinusoidal initial conditions. The solution specifies that the transfer function for peak velocity 
should be of the form 

where L is the horizontal scale of the pressure field and R, is the Rossby radius of deformation 
appropriate to the vertical structure of the pressure anomaly. This function is asymptotically 
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proportional to L for small L and to 1/L for large L, with a maximum at L = R,. The maximum 
slope of order L’ is not strong enough to account for the results observed with the model. In 
any event, the function Vmax(L) is almost constant when L and R ,  are of the same order as is 
the case here. Therefore we cannot expect the linear inviscid Rossby adjustment process to 
explain these results.* 

The fact that the error increases with L can also not be explained by assuming that some of 
the cases were not yet ‘spun up’. This is because the narrower seamount cases adjust more 
rapidly (because the initial errors and slopes are larger, implying larger vertical advection and 
thus faster adjustment-compare Figures 6 and 7), so that if any cases are displaying anomal- 
ously low values, it is the well-resolved ones-quite the opposite of what we need to explain the 
observed transfer function. 

The observed error growth of the model must therefore be due to effects not contained in the 
linear, inviscid Rossby adjustment model. These effects include advection of density, viscosity 
and numerical energy non-conservation. 

The role of advection of density is crucial in the spin-up problem, but other than controlling 
the times scales (which we have just noted acts in the wrong sense to explain the L3 transfer 
function), it is not evident that this can act to control the peak velocity in the way that is 
observed. 

The lateral coefficient of biharmonic viscosity was kept fixed across these runs. Since 
the scale of the solution matches the scale of the topography, the viscous terms decrease across 
the series as L4. Thus for a fixed integration time the dependence on L can be expected to range 
from L4 (where viscosity is an 0(1) term) to Lo (where viscosity is negligible). The apparent 
dependence of order L3 shown here would be consistent with a level of viscosity that is important 
over most of the parameter range tested. The scaling of the viscous terms relative to the Coriolis 
terms is still small. For example, for the L = 10 km case, 

However, the viscous time scale for this case is 

L4/A4 = lo6 s (15) 

or about 1 1  days. This would account for a decay by a factor of three over a 10 day integration 
and is probably a large part of the explanation of the behaviour for the shorter scales ( L  < 20 km). 
However, for L= 20 km this time scale is 176 days, so the decay at 10 days is only 5 %  and can 
be neglected. Since the viscosity can be neglected for the 20 and 40 km cases, it clearly cannot 
be called on to account for the difference in the transfer function for these larger scales. 

Energy non-conservation was not tested explicitly. It is expected to be at the level of the 
truncation error and therefore proportional to Ax’, but its dependence on L is unknown. 

Whatever their exact causes, the seriousness of these combined errors depends on a combina- 
tion of the user’s accuracy requirements and the available grid resolution. Note that the increase 
in maximum velocity with L is especially important in applications for which the integrated 
mass transport is of interest, since the error velocity is both larger and extending over a larger 
region. The fourth-order scheme provides a reduction in the error which is more than sufficient 

* A more complicated Rossby adjustment model (obtained by including the spatial dependence of R ,  caused by the 
finite amplitude topography) shows an even weaker dependence on L. In this case topographic vortex stretching 
dominates the solution, making the transfer function for peak velocity a monotonically decreasing function of L The 
stratified model is expected to display behaviour somewhere between these two extremes. 
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to overcome the increased tendency of the model to incorrectly generate flow at larger scales 
and also more than sufficient to decrease the total error transport as the scale increases. 

6.2 Dependence on mean stratiJication 

SPEM is set up in such a way that a ‘mean’ stratification is removed from the dynamic density 
variable. This mean stratification is a function of z only and is typically chosen to minimize the 
absolute magnitude of the dynamic density variable, since it is that magnitude which feeds the 
spurious pressure gradient force. For the unforced experiments executed here, it is clearly 
unreasonable to set the initial density field equal to the mean stratification. This would result 
in a vanishing dynamic density field which would produce zero pressure gradients to round-off 
error. B&H chose an initial condition 

pi = p(z) - 0.1 exp (z/lOOO), (16) 

which corresponds to a temperature anomaly of only 0.5 K at 400 m (near the top of the 
seamount). At the location of the maximum slope of the co-ordinate system the density anomaly 
is considerably smaller. This temperature anomaly is much smaller than those which could 
reasonably be expected to exist due to geostrophic flows and therefore makes their tests too 
‘easy’ for the model. In the cases presented here with the medium and strong stratifications, 
temperature anomalies an order of magnitude stronger than this might be expected at mid- 
thermocline depths. 

Despite these reservations, a series of experiments were run that closely parallel those of B&H. 
The time series of peak velocity for the case of a 40 km wide seamount are presented in Figure 
6 and those for the case of a 20 km wide seamount are presented in Figure 7. The most 
immediately striking results are that (i) the fourth-order model has much lower errors than the 
second-order model and (ii) the error velocities are only weakly dependent on the mean 
stratification. This is perhaps not surprising, since it is the perturbation density rather than the 
mean density which goes into the scaling of the spurious pressure force in equation (5 ) .  

6.3 Dependence on perturbation density magnitude 

As mentioned in the previous subsections, the size of the initial density anomaly is expected 
to have a large impact on the magnitude of the spurious current generated in the initial 
adjustment process. Therefore a series of experiments were conducted using much larger initial 
density anomalies. This was implemented by simply modifying the mean density field (which is 
subtracted from the dynamic density field) to be a constant of 28.0 kg md3.  Note that a global 
mean density of 1000 kg m-3  is subtracted from all cases, since it does not contribute to any 
dynamics. The same initial temperature profiles were used as in the previous cases, so the initial 
density anomalies were 0-3, 1-8 and 3.8 kg m-3 times the exponential vertical decay function. 
These fields correspond to surface temperature anomalies of 2.14, 12.86 and 27-14 K respectively. 
While the last two of these are perhaps larger than one should encounter at any z-level if a 
suitable reference field is chosen, they do give insight to the behaviour of the model when strong 
density anomalies are present.* 

The tests with large initial density anomalies were run for seamount widths of 40, 20 and 
15 km. The results are presented in Figures 8-10 respectively. These results again shown the 

* In an earlier model4, the author only subtracted a global mean density from the dynamic density field. The results of 
this subsection show clearly why that model failed to perform adequately in the simultaneous presence of strong 
topography and strong stratification. 
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marked superiority of the fourth-order scheme. In addition, the results show restrictions on the 
stability of the second-order scheme that are relaxed with the fourth-order algorithm. The 
second-order scheme was unstable in four of nine cases-whenever the seamount widths was 
less than or equal to 20 km and the stratification was simultaneously stronger than the weakest 
case. The fourth-order scheme was stable for all cases, though the error velocities reached 
9 cm s - l  in the worst case. 

6.4 Dependence on time step 

The results showed essentially no dependence of the error magnitudes or error evolution on 
the time step. This is consistent with the usual expectation that the restrictions on stability are 
more stringent than the restrictions on accuracy. 

The fourth-order schemes are expected to have a somewhat more stringent stability limit on 
the time step.’ This was only observed in two sets of test cases. 

One, with L = 40 km, was stable with the second-order model with medium stratification and 
a Courant number of 0.364, while the fourth-order model was unstable in the same configuration. 
Both models were stable when the Courant number was reduced to 0.182. Both models were 
unstable for a Courant number of 0.364 when the seamount scale was reduced to 20 km. In 
addition, the strong stratification tests were rerun with a Courant number of 0.258 and were 
stable for both second-order and fourth-order differencing for both the 40 and 20 km seamount 
width cases. 

The second case was for j? = 0.9 and a 20 km seamount. The second-order model was stable 
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with a Courant number of 0.174, but the fourth-order model required a slightly lower Courant 
number-it was stable at a Courant number of 0.138. 

The difference between the two cases discussed above is that the first had a relatively weak 
dynamic density anomaly of 0-2 kg m-3, while the second was part of the series with stronger 
anomalies, in this case 0.9 kg m-3. It is not surprising that the significantly stronger noise in 
the latter case made the calculation slightly less computationally stable. 

6.5 Dependence on seamount height 

A series of experiments were run with an intermediate level of stratification (6.43 K or 
0.9 kg m-3), a constant ‘mean’ stratification and a variety of seamount heights. Seamount 
amplitude of 100, 200, 500, 1000, 1500,2000, 2500, 3000, 3500,4000 and 4500 m were used. 

The results show an approximately exponential increase in the maximum error velocity at day 
10 as a function of seamount height. This is to be expected because of the exponential increase 
in perturbation density with height. Figure 11 shows the results for both the second-order and 
fourth-order models. The approximately exponential dependence on seamount height is sug- 
gested in Figure 12, which presents the same data with the ordinate on a logarithmic scale. 

6.6 Dependence on lateral viscosity 

All the model experiments described in this study were performed with no lateral diffusion of 
density. This approach is suggested by the fact that diffusion of density along sigma surfaces 
(which is the easiest formulation to implement) generates horizontal pressure gradients wherever 
the sigma surfaces are not flat. This then produces horizontal pressure gradients which 
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drive geostrophic currents in much the same way as the pressure gradient errors being addressed 
in this study. 

Unfortunately, the absence of horizontal diffusion of density means that any short-scale 
information that is generated in the pressure field (by topographic scale advection of density) 
will remain there and continue to force short scales in the momentum equations (which are 
proportional to the gradient of the pressure). Finite difference models are rather sensitive to the 
existence of such short-scale information in the velocity fields and their stability properties are 
significantly compromised by its continuous introduction. Because of this continuous forcing at 
short scales, some lateral viscosity is required in the momentum equations to maintain stability. 
This ‘lateral’ viscosity is actually calculated on sigma surfaces but does not directly cause 
difficulties in the same way that iso-sigma diffusion of density does. A constant coefficient 
biharmonic formulation is used for the lateral viscosity here. 

It is the nature of viscosity to be more active at short scales. Therefore one would expect that 
in those cases where viscosity is needed to retain stability, the dynamical balance would include 
viscosity as a non-negligible term. This has been observed to be the case for poorly resolved 
topography. An example was a case with L = 20 km and the standard grid (5.5 km resolution). 
The geostrophic velocities at any pont in time were strongly dependent on the lateral viscosity. 
The dependence was less than linear, suggesting that for the low-frequency part of the solution 
the dynamical balance included three terms: Coriolis force, pressure gradient and lateral 
viscosity. This behaviour was true for both the second-order and fourth-order models, though 
the absolute errors were much smaller and the amount of viscosity required to maintain 
stability was somewhat smaller with the fourth-order code. 
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Because of the feedback mechanism described above, the model requires non-negligible levels 
of lateral viscosity even with well-resolved topography. The levels are not large in the non- 
dimensional sense but do influence the peak error velocity by factors of up to three as the 
viscosity is varied from the minimum level required for stability to the maximum level allowed 
by linear stability (i.e. we keep the time step determined by the CFL condition on the hyperbolic 
part of the problem). For a seamount width L = 40 km and the fine resolution grid (2.75 km 
minimum spacing) the peak error velocity at 10 days was 0 8  mm s - l  with A, = lo9 m4 s f 1 ,  
increasing to 2.3 mm s K 1  with A, = 10' m4 s-' .  

Care was taken in all the other cases in this study to present only results computed with the 
same level of lateral viscosity. This is the reason why no standard convergence tests were 
performed-it was not possible to run a sequence of experiments covering a large range of grid 
spacings with the same lateral viscous coefficient. Either the coarse resolution cases were unstable 
or the fine resolution cases required unreasonably short time steps for stability. Convergence 
testing by keeping the grid fixed and varying L was therefore used instead. 

7. DISCUSSION 

It is of interest to attempt to find the 'correct' set of parameters which control the accuracy and 
stability of the a-co-ordinate model. For the case of fixed j ,  B&H express their results in terms 
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of the Burger number S and the maximum value of a non-dimensional ratio of grid steepness 
to local depth: 

h +  - h -  
r =  

h ,  + h - '  

where h+ and h -  refer to the depths of the fluid on either side of the test point. The parameter 
rmax is defined as the largest value of r occurring in the domain. Their results show that both 
the stability and accuracy are rather weak functions of S .  This is likely a direct result of choosing 
a fixed perturbation density for all experiments. 

An alternative parameteric representation is to study the stability and accuracy as functions 
of the Burger number S and i?. Note that for the fixed grid used in these experiments, S implicitly 
contains both the non-dimensional scale of the topography (R,/L) and the grid resolution (AxlL) .  
Figure 13 gives the final (day 10) peak error velocities as a function of Burger number S and 
density anomaly magnitude for the second-order model. Five of the experiments were unstable 
and are marked with asterisks. The same information for the fourth-order model is presented 
in Figure 14. For this algorithm all cases were stable, but the two cases with fi = 3.8 combined 
with Burger numbers of 1.87 and 2.49 displayed rather large error velocities. Comparison of the 
two figures shows a rather broad range in which the errors of the fourth-order scheme are 
reduced by factors of 1&20 relative to the second-order scheme. In the 'easy' limit of small 
density perturbation and small Burger number the ratio increases to about 40: 1. 
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8. CONCLUSIONS 

The use of a fourth-order-accurate pressure gradient algorithm has been shown to drastically 
reduce the spurious velocities generated near steep topography in a stratified, three-dimensional 
ocean model employing a vertical boundary-fitted co-ordinate. For the seamount test case here 
the error was reduced by a factor of 10-20 over most of the parameter space. 

The details of the adjustment process of a model initialized with a ‘flat’ density field have 
been shown to be considerably more complex than one would expect based on a simple Rossby 
adjustment model. In addition to the generation of inertia-gravity waves, the model experiences 
significant evolution associated with advection of the density field vertically then horizontally 
by the spuriously generated currents. Because of this added complexity, the final ‘spun-up’ 
velocities of the full three-dimensional model are not trivially related to the initial pressure 
gradient amplitude error. 

For fixed Burger number the stability and accuracy and clearly dependent on the magnitude 
of the perturbation density as well as on the grid resolution. Although no obvious combination 
of controlling parameters has been found which clearly delineates the behaviour of the model, 
the new fourth-order scheme has been shown to provide the model with a greater parametric 
domain (in terms of Burger number, topographic slope and perturbation density) of both 
accuracy and stability than did the second-order scheme. The approximately 200 numerical 
experiments performed in this study showed no cases for which the second-order scheme could 
be considered either more accurate or more cost-effective. 
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APPENDIX I :  COMMENTS ON COMPACT DIFFERENCING SCHEMES 

In many instances the compact differencing schemes are capable of producing results superior to 
the standard wide stencil schemes. l o  Compact differencing schemes work by estimating the 
leading term of the truncation error by a finite difference approximation on the solution. This 
produces an implicit system which for first derivatives on an unstaggered grid looks like 

1 dp 2 d p  1 dp p i + l  + p i - 1  Ax4 a s p  +-,. -~ +--+-- -  - 
6dx i+ ,  3 axi 6ax i - ,  2Ax 180 axi 

On a staggered grid one must define the derivatives at the midpoints of the intervals separating 
the p-points. The scheme is otherwise analogous. 

Unfortunately, the tridiagonal system implied in equation (18) requires knowledge of the 
derivative of p at both boundaries. Such information is not directly accessible from the governing 
equations or kinematic boundary conditions. 

A very good approximation to the normal derivative of p at the boundaries can be obtained 
by reducing and scaling the normal momentum equation. For the case of a boundary at constant 
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x the momentum equation reduces to 

where A ,  is the coefficient of Laplacian eddy viscosity. 
For cases with slip boundary conditions u does not vanish and the momentum equation.may 

be geostrophic, depending on the scaling of the viscous terms. The viscous terms will be at their 
largest when the normal velocity increases most rapidly away from the wall, as at the separation 
point of a western boundary current. Assuming that the normal velocity increases from zero to 
O(1)ms-’  in one baroclinic radius of deformation and that the eddy viscosity coefficient is 
O(i03), we estimate a scale of 

for this force. This can be compared with the force caused by geostrophic flow tangential to the 
boundary, f u. The ratio indicates that the largest possible derivative that can be caused by the 
viscous terms in the normal momentum equation is equivalent to that caused by a tangential 
geostrophic flow of 

and can thus be considered to be negligible. The size of the viscous term is even smaller when 
biharmonic viscosity is applied with typical coefficients: 

~- - 1.6 x 10-9. 
(1)(10‘0) 
5oooo4 

For the case of no-slip boundaries the Cariolis term vanishes and the pressure gradient must 
balance the force from the viscous terms. Although this value may be non-zero, it is from the 
above arguments O( 10- 3, relative to interior pressure gradients and thus may be approximated 
as vanishing. 

If the preceding arguments are accepted, then the normal derivative of pressure may in all 
cases by assumed to be exactly geostrophic at the boundary. The difficulty with the C-grid used 
in SPEM is that the discrete version of the geostrophic relationship that must be used to obtain 
the normal derivative of pressure at a normal velocity point is 

where the overbars indicate a spatial averaging. In order to obtain fourth-order accuracy, one 
must employ fourth-order-accurate averaging operators here in both directions. This requires a 
4 x 4 array of u-points and would be quite expensive, as well as of dubious accuracy. Note that 
the tridiagonal system directly couples the entire domain, so second-order errors introduced at 
the boundary are propagated throughout the domain at each time step. This is not the case 
with the wide stencil scheme. 

APPENDIX 11: THE ARAKAWA B-GRID 

Many large-scale ocean circulation models employ a different staggered grid, the Arakawa 
B-grid, for which both components of the velocity are evaluated at the same points. The 
staggering of the pressure points requires that the pressure gradient terms be averaged in y for 
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the u-momentum equation and in x for the u-momentum equation. In order to achieve formal 
fourth-order accuracy with this grid, a fourth-order averaging operator would be required. Note, 
however, that this average is in the direction orthogonal to the direction of the pressure derivative 
and therefore does not contribute directly to the component of the pressure gradient error which 
causes the trouble. 

More specifically, if one calculates the fourth-order-accurate derivatives first, one receives the 
benefit of the fourth-order-accurate cancellation of the truncation errors of the two components 
of the pressure gradient error. If one then performs second-order-accurate averages of the results, 
this will decrease the overall accuracy of the scheme but cannot undo the cancellation of the 
pressure gradient errors that the fourth-order scheme provided. 

The formulae for fourth-order-accurate derivatives and averages are the same on the B-grid 
as on the C-grid, since they are all being evaluated at the midpoints of intervals. 
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